MATH5012 Exercise 2

Here μ is a Radon measure on \mathbb{R}^n . Many problems are taken from [R1].

 Use maximal function to give another proof of Lebesgue differentiation theorem. Setting

$$(T_r f)(x) = \frac{1}{\mu(\overline{B}_r(x))} \int_{\overline{B}_r(x)} |f - f(x)| d\mu ,$$

and

$$(Tf)(x) = \limsup_{r \to 0} (T_r f)(x) .$$

Show that $T_r f = 0$ μ -a.e.. Suggestion: For $\varepsilon > 0$, pick continuous g such that $||f - g||_{L^1} < \varepsilon$ and establish $Tf(x) \le Mh(x) + |h|(x)$ where h = f - g. Then use 7(a) in Ex 1.

- (2) Let E be μ -measurable. Show that μ -a.e. $x \in \mathbb{R}^n \setminus E$ has density 0 in E.
- (3) Let F be closed in \mathbb{R} and $\delta(x)$ the distance from x to F,

$$\delta(x) = \inf \left\{ |x - y| : y \in F \right\}.$$

Show that

$$\frac{\delta(x+y)}{|y|} \to 0 \quad \text{a.e.} \ x \in F \text{ as } y \to 0.$$

Hint: May take x a point of density 1.

- (4) For $\delta > 0$, let $I(\delta) = (-\delta, \delta)$. Given α and β , $0 \le \alpha < \beta \le 1$, construct a measurable set E so that the upper and lower limits of $\mathcal{L}^1(E \cap I(\delta))/2\delta$ are equal to α and β respectively as $\delta \to 0$.
- (5) If $A \subset \mathbb{R}^1$ and $B \subset \mathbb{R}^1$, define $A + B = \{a + b : a \in A, b \in B\}$. Suppose m(a) > 0, m(b) > 0. Prove that A + B contains a segment, by completing the outline given in [R1].

(6) A point $x \in \mathbb{R}^n$ is called an atom for a measure λ if $\lambda(\{x\}) > 0$. Establish the decomposition

$$\mu = f\mathcal{L}^n + \mu_{cs} + \sum_k a_k \delta_{x_k}, \quad a_k > 0,$$

where $f \in L^1(\mathcal{L}^n)$ and μ_{cs} has no atoms.

- (7) Let $\{x_n\}$ be an infinite sequence of distinct numbers in [0, 1]. Can you find an increasing function in [0, 1] whose discontinuity set is precisely $\{x_n\}$?
- (8) (a) Consider the real line. Show that x is not an atom for μ if and only if its distribution function is continuous at x.
 - (b) Use (a) to construct a singular measure, that is, perpendicular to \mathcal{L}^1 , without atoms. Suggestion: Consider the Cantor-Lebesgue function.
- (9) Let μ be a singular measure with respect to \mathcal{L}^1 and f its distribution function. Show that for μ -a.e. x, either f'_+ or f'_- becomes ∞ .
- (10) Construct a continuous monotonic function f or \mathbb{R}^1 so that f is not constant on any segment although f'(x) = 0 a.e.